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The electron-spin-echo envelope modulation (ESEEM) arising the electronic and geometric structure of paramagnetic sites
from hyperfine coupling to a nucleus of arbitrary spin I is investi- through the measurement of nuclear transition frequencies.
gated. The generic ESEEM pulse sequence, consisting of a succes- It is especially useful in the investigation of solid samples
sion of nonselective microwave pulses and free-evolution periods, which often feature poorly resolved inhomogeneously broad-
is first considered. It is shown that, when the high-field approxima- ened spectra in the conventional electron paramagnetic reso-
tion is valid, the ESEEM for a nucleus of arbitrary spin is a func-

nance experiment (1) .
tion of the ESEEM for a IÅ 1

2 nucleus subject to the same Hamilto-
The envelope modulation of the primary (two-pulse) elec-nian and that the functional relationship is provided by the Cheb-

tron spin echo, first observed in 1961 by Mims et al. (2) ,yshev polynomials of the second kind. Such relationship also
was theoretically described a few years later (3) . A spinprovides a very efficient method for the numerical simulation of
system with arbitrary electron and nuclear spin quantumthe ESEEM due to I ú 1

2 nuclei. Next, the experiments based on
numbers (S and I , respectively) was considered and a gen-the primary and on the stimulated electron-spin-echo pulse se-
eral recipe for the calculation of the ESEEM was reportedquences are considered and explicit analytical formulas for arbi-

trary nuclear spin are given. The central result of the theory devel- which, however, neglected the nuclear quadrupole interac-
oped is that the modulation amplitudes are polynomials of degree tion. The explicit ESEEM formula was obtained for the spe-
2I in the modulation depth parameter k . This nonlinearity intro- cial case S Å 1

2, I Å 1
2. Later, there was proposed another

duces two differences with respect to the I Å 1
2 case. First, the general scheme (4) for the calculation of ESEEM based on

amplitudes of the fundamental pure and combination modula- the matrix representation of operators. In this way, explicit
tions, already present for spin-1

2 nuclei, are largely nonlinear func- formulas for the primary and for the stimulated (three-pulse)
tions of k ; second, harmonics of the fundamental modulations (up ESEEM were obtained for a spin system consisting of one
to the 2Ith) occur in the ESEEM with amplitudes which can be

electron and one nucleus with I Å 1
2 or 1. In the latter case,comparable with those of the fundamentals. As a general rule,

the nuclear quadrupole interaction was treated as a smallnonlinear effects are more important when I is large, provided
perturbation affecting only the nuclear transition frequencies.that all the other factors are the same. Since terms of different

order in k alternate in sign, the modulation amplitudes show an The problem of computing the ESEEM due to a nucleus of
oscillating behavior and reach their maximum well before k Å 1. arbitrary spin was also considered, but an explicit formula
While the amplitude of the pure modulations is always positive, was obtained only by neglecting the nuclear quadrupole in-
that of the combination modulations (which occur only in primary teraction and by assuming that the modulation is very shal-
and 2-D stimulated ESEEM) can be either positive or negative, low (5) . It is worthwhile to point out how the adjective
depending on the value of k ; thence a new type of suppression

‘‘explicit’’ is meant. Such formulas can be said to be expliciteffect ensues which is independent of interpulse delays. Besides,
because the echo amplitude is expressed as a linear combina-the well-known suppression effect in the 1-D stimulated ESEEM
tion of cosine functions, their arguments containing the mod-of I Å 1

2 nuclei occurs also when I ú 1
2 in a similar way. Spectral

ulation frequencies and the time intervals between the pulsessimulations are presented to illustrate the characteristics of the
and their amplitudes being proportional to a single parame-ESEEM arising from I ú 1

2 nuclei. The theory developed is com-
ter, namely the modulation depth parameter k . On one hand,pared with an earlier analysis which neglected nonlinear terms,
this parameter has a clear physical (and even geometrical)and its advantages are demonstrated. q 1997 Academic Press

interpretation and is readily related to the strength of the
nuclear magnetic interactions; on the other hand, the echo-
modulation amplitude is completely determined by k and I .INTRODUCTION
Thus, the modulation-depth parameter is a theoretical tool
which permits a thorough examination and comparison ofElectron-spin-echo envelope modulation (ESEEM) spec-

troscopy is a well-established tool for the determination of the amplitude of the various echo modulations as a function
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88 ALESSANDRO PONTI

of a single parameter, without reference to particular values The nuclear quadrupole interaction cannot be taken into
account rigorously since, because the quadrupole Hamilto-of the spin Hamiltonian parameters.

Of course, explicit formulas transparently describe either nian is quadratic in the nuclear spin operators, the associated
propagator is not a rotation matrix in the nuclear spin space,the time-domain ESEEM or the frequency-domain spectrum

since the Fourier transformation which relates them is trivial. an indispensable requisite, as we will see, for the theoretical
treatment presented. Since every I ú 1

2 nucleus possesses aExplicit ESEEM formulas can be found in the literature
almost exclusively for the S Å 1

2, I Å 1
2 system, which has nuclear quadrupole moment, the question arises as to which

nuclei are amenable to this theory. Among these, there arebeen employed as a model system for the theoretical descrip-
tion of new ESEEM experiments. Attention has been de- certainly nuclei with such a small nuclear quadrupole mo-

ment that the nuclear quadrupole interaction can be veryvoted to include the effect of the nuclear quadrupole interac-
tion on the modulation amplitude in the S Å 1

2, I Å 1 system, often neglected, e.g., 2H (I Å 1) (16) and 133Cs (I Å 7
2) (17) .

However, as the nuclear quadrupole interaction depends alsoand results at different approximation levels have been ob-
tained (6–9) . More recently, the I Å 5

2 case (10, 11) has on the microscopic environment through the electric field
gradient at the nucleus, several cases have been reportedalso been considered. However, no explicit ESEEM formula
where the ESEEM is only slightly affected by the nuclearhas been reported: in any case, the modulation amplitude
quadrupole interaction despite a rather large nuclear quadru-was given as a rather complicated expression involving many
pole moment, e.g., 7Li (I Å 3

2) in the lithium-compensatedmatrix elements of the quantum propagators related to the
pulse sequence considered. Ti3/ center in a quartz (18) , 17O (IÅ 5

2) in the hexaaquoman-
The aim of this work is to investigate the relationship ganese(II) complex (19) , and even 35Cl and 37Cl (I Å 3

2) in
among the ESEEM arising from hyperfine coupling to nuclei the IV coordination shell of the F center in KCl (20) . In
of unequal spin and to calculate the explicit expression for such cases, the effect of the nuclear quadrupole interaction
the primary and the stimulated ESEEM due to a nucleus of reduces to a broadening and/or splitting of the frequency-
arbitrary spin. The scope of the present paper is restricted domain peaks, but the center frequency and the total ampli-
to standard ESEEM experiments which involve only nonse- tude of the resulting multiplet are those predicted neglecting
lective microwave pulses. Recently, experiments have been the nuclear quadrupole interaction (4, 16b) . In any case,
proposed which make use of selective (12) , semi-selective even when the nuclear quadrupole interaction is large, the
(13) , or matched (14) excitation. Such advanced experi- simplification introduced by ignoring the quadrupole term
ments improve the standard experiments in several respects; is so considerable that it may be worth approximating in
nevertheless, the latter are still the most widely used in appli- this way in order to obtain an estimate of the amplitude of
cation work. the modulations (5) .

In Ref. (3) , it was already shown that, omitting the nuclear The paper is structured as follows. First, the theoretical
quadrupole interaction, the ESEEM is the trace of a (2I / background of ESEEM spectroscopy is briefly reviewed and
1)-dimensional rotation matrix but it was Dikanov et al. the approximations involved are clearly stated. Second, it is
(15) who exploited this algebraic property of the ESEEM shown that the ESEEM due to nuclei with different spin are
to demonstrate that the primary and the stimulated ESEEM related to each other by the Chebyshev polynomials of the
due to a nucleus of arbitrary spin can be written as a polyno- second kind and the explicit primary and stimulated ESEEM
mial in which the independent variable is the ESEEM due formulae for arbitrary I are derived. Next, the modulation
to a hypothetical I Å 1

2 nucleus subject to the same interac- amplitudes are analyzed and the differences between the I
tions as the real one. However, they did not find the polyno- Å 1

2 and the I ú 1
2 cases are described and illustrated by

mial coefficients and thus they could not calculate explicit spectral simulations. Finally, the main results of the present
ESEEM formulas. In this paper, it is proved that, when work are summarized.
the high-field approximation is valid and the quadrupole
interaction is neglected, such a polynomial relationship ex-

THEORETICAL BACKGROUNDists for any standard ESEEM experiment and that the polyno-
mials are the Chebyshev polynomials of the second kind.

The theory of ESEEM has been reported many timesThese results are used to calculate explicit formulas for the
(3, 4, 21, 22) ; therefore in this section, I report only theprimary and the stimulated ESEEM arising from hyperfine

coupling to a nucleus of arbitrary spin. Such formulas are main features of the model system and summarize the matrix
based on the same approximations and have the same valid- method used to compute the evolution of spin systems under
ity as the well-known expressions for the S Å 1

2, I Å 1
2 spin time-independent Hamiltonian operators, also showing the

approximations involved.system. They show that, when the nuclear spin is larger than
The present paper deals with a spin system consisting of1

2, the ESEEM amplitude depends on the modulation depth
one electron with spin S Å 1

2 and one nucleus with arbitraryparameter k in a largely nonlinear way. This behavior causes
many new facets of ESEEM spectroscopy to come to light. spin I placed in a uniform magnetic field B0 which defines
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89ESEEM MODULATION FROM HIGH-SPIN NUCLEI

the z axis of the laboratory reference frame. The spins are where Op is the operator associated with the quantity and
Tr is the trace. In the present paper, all quantum operatorscoupled to B0 by the Zeeman interaction and to each other

by the hyperfine interaction. In the usual frame rotating about are represented by square matrices of dimension 2(2I / 1)
equal to the number of states of the spin system, and thethe z axis at the microwave frequency the Hamiltonian opera-

tor in angular units is simple products ÉmS , mI … of the eigenfunctions of Sz and Iz

are used as basis functions. The high-field approximation
suggests partitioning such matrices with respect to the elec-H0 Å VSSz / vI Iz / ASzIz / BSzIx , [1]
tron spin S since mS is a good quantum number. In the
following, I write them as 2 1 2 matrices, the elements ofwhere VS Å gbB0 /\ 0 vmw is the offset from the microwave
which are matrices defined in the (2I / 1)-dimensionalfrequency vmw, vI Å gIbnB0 /\ is the nuclear Larmor fre-
Hilbert subspace associated with the nuclear spin (I space) .quency, and A and B are related to the elements of the
The density matrix is then written ashyperfine matrix A in the laboratory frame:

A Å Azz , B Å
√

A 2
zx / A 2

zy . [2] s Å Fsaa sab

sba sbb
G [6]

There are three assumptions underlying Eq. [1] , i.e., that the
electron and nuclear Zeeman interactions are isotropic and The four blocks can be classified as to the electron coherence
that the former is much larger then the hyperfine interaction order (23) , i.e., the difference in mS between the states con-
(high-field approximation). The Hamiltonian H0 is not diag- nected by each block. The off-diagonal blocks sab and sba

onal with respect to the nuclear spin because of the anisot- connect states in different mS manifolds, and then their elec-
ropy of the hyperfine interaction which makes the effective tron coherence order is, respectively, /1 and 01. The diago-
field at the nucleus—and then the quantization axis of the nal blocks saa and sbb connect states within the same mS

nuclear spin—not parallel to B0 . The effective field depends manifold, and both have zero electron coherence order.
on the electron spin state both in magnitude and in direction, At the beginning of experiments, the sample is in thermal
that is, both the nuclear sublevel energy and the orientation equilibrium at temperature T and, assuming that the spin
of the nuclear quantization axis depend on mS . The eigenval- Hamiltonian H0 is much smaller than the thermal energy kT
ues of H0 are (high-temperature approximation), the initial density matrix

s(0) can be written as
E(mS , mI) Å mSVS / mI

√
(vI / mSA)2 / (mSB)2 , [3]

s(0) à 0Sz Å 0
1
2 F1I 0I

0I 01I
G , [7]where the square root represents the nuclear transition fre-

quencies va and vb in the mS Å /1
2 and 01

2 manifold, respec-
tively. The effective-field vectors at the nucleus in the two

where 1I and 0I are the identity (unit) and null (zero) matri-mS manifolds define the angle
ces of dimension (2I / 1), and constant terms are neglected.
The time evolution of the spin system is governed by the

2h Å arctan
B

A / 2vI

0 arctan
B

A 0 2vI

, [4] Liouville equation

which plays a fundamental role in ESEEM spectroscopy. In d

dt
s( t) Å 0i[ H , s( t)] [8]

fact, the modulation depth parameter is k Å sin22h (0 £ k
£ 1). To observe the echo modulation, it is then necessary where H is the spin Hamiltonian operator and relaxation
that B x 0, i.e., that the hyperfine interaction is anisotropic. is neglected. Any ESEEM experiment is based on a pulse
One expects a small k when the nuclear Zeeman interaction sequence, that is, on a succession of microwave pulses and
predominates over the hyperfine interaction or vice versa, free-evolution periods during which the system is subject to
since then h à 0 or h à p /2. On the other hand, a large k different but constant Hamiltonian operators H1 , H2 , . . . ,
is expected when the two interactions have approximately Hn . The density operator at the end of the experiment is
the same strength since then 2vI à (A 2 / B 2) 1/2 and h à
p /4.

s( t1 / rrr / tn)
A quantum spin system is completely defined by its den-

Å e0iHn tnrrre0 iH1 t1s(0)e iH1 t1rrre iHn tn . [9]sity operator s , as the expectation value of any physical
quantity can be computed as

During a free-evolution period of duration t , the spin sys-
tem is subject to H0 , and the corresponding propagator is»Op … Å Tr{sOp} [5]
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90 ALESSANDRO PONTI

E( techo ) å »Sx … Å *
/`

0`

Re Tr{sab( techo )}g(VS)dVS ,exp(0iH0t) Å Fexp(0iHat) 0

0 exp(0iHbt)
G , [10]

[15]

where g(VS) is the normalized shape of the absorption EPRwhere Ha and Hb are reduced Hamiltonian operators in the
spectrum. In ESEEM spectroscopy, it is customary to nor-mS Å /1

2 and mS Å 01
2 manifold, respectively, which can be

malize the echo by the amplitude E(0) of the echo whenwritten as
all time intervals are zero. The normalized ESEEM is then
defined as

Ha

Hb

J Å {(VS /2)1I / (vI { A /2)Iz { (B /2)Ix
M Å E( techo ) /E(0) . [16]

ESEEM DUE TO A NUCLEUS OF ARBITRARY SPIN
Å H/(VS /2)1I / Ja

0(VS /2)1I / Jb
, [11]

General Properties of ESEEM

In this subsection, I demonstrate that a close link existswhere Ja and Jb are angular momentum operators which
between the ESEEM arising from nuclei of unequal spindescribe the interaction of the nuclear spin with the effective
whenever the high-field approximation is valid. As a firstfield in the mS Å /1

2 and 01
2 manifold, respectively. During

step, I prove that each block in the density matrix alwaysmicrowave pulses, the system is subject to the rotating frame
consists of a linear combination of rotation matrices actingHamiltonian
in I space. Second, I find the relationship between the
ESEEM M(I) stemming from different I values using some

H Å H0 / Hp Å H0 / v1Sy , [12] results from the group theory of rotations.
At the beginning of ESEEM experiments, electron coher-

where v1 is the strength of the component of the microwave ence is created by applying to the sample in thermal equilib-
field which is static in the rotating frame. rium a nonselective p /2 pulse which can be assumed to be

The description of the evolution during microwave pulses along the y axis of the rotating frame. Using Eqs. [7] , [9] ,
is greatly simplified if it is assumed that Hp is much larger and [13], the density matrix after the pulse can be written
than H0 . The pulse is then said to be ideal or nonselective as
since it excites uniformly all spin packets which constitute
the EPR spectrum. The ideal-pulse approximation is for-

s(0/) Å 0 1
2 F0I 1I

1I 0I
G . [17]mally stated by writing the propagator for a nonselective

pulse directed along the y axis of the rotating frame as

The off-diagonal blocks are the identity matrix in I space,
which is the (trivial) rotation matrix through a null angle.
During the experiment, the density matrix undergoes

exp(0ibSy) Å

cosSb2D1I 0sinSb2D1I

sinSb2D1I cosSb2D1I

, [13] changes caused either by nonselective pulses or by free evo-
lution. Without fixing attention on a particular sequence, I
consider the effect of a free-evolution period of duration t
on the generic density matrix s . From Eqs. [6] , [9] , [10],
and [11], one can write

where b is the pulse turning angle. The evolution of the
density matrix during a given pulse sequence is computed

e0 iH0 tse iH0 t

by these propagators.
At the end of the sequence, the echo is detected 907 off-

Å F e0 iJatsaae
iJat e0iVSte0 iJatsabe iJbt

e iVSte0iJbtsbae
iJat e0 iJbtsbbe iJbt G . [18]phase from the microwave pulses at time techo . The contribu-

tion of a single spin packet to the echo amplitude is computed
as the expectation value of Sx Since the Jm (m Å a, b) are nuclear angular momentum

operators, the exponential matrices exp({iJmt) are rotation
»Sx … å Tr{s( techo )Sx} Å Re Tr{sab( techo )} [14] matrices in I space. Of course, the product of two or more

rotation matrices is another rotation matrix acting in the
same space, and then the transformed blocks of s are rotationsince s is hermitian and then sba Å s †

ab . Summing over all
the spin packets yields the echo amplitude matrices in the I space. For instance, the off-diagonal blocks
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91ESEEM MODULATION FROM HIGH-SPIN NUCLEI

of s(0/) transform into other rotation matrices while the future convenience. Each Gn(I) is a product of exponential
diagonal blocks remain null. Note that the free evolution matrices involving Ja and Jb and represents one of the possi-
makes the smn block (m, n Å a, b) left-multiplied by ble coherence-transfer pathways contributing to the echo am-
exp(0iJmt) and right-multiplied by exp( iJnt) so that the evo- plitude. As already pointed out, the pathway is recorded in
lution history of each part of the density matrix is recorded the sequence of the exponential matrices which appear in
in the free-evolution propagators. Moreover, the off-diagonal the Gn(I) itself. The exponential phase factors contain the
blocks are multiplied by the appropriate phase factor linear combinations tn Å ( r

jÅ1 h (n )
j tj of the time intervals tj

exp({iVSt) which accounts for the dephasing of the electron between pulses, where the coefficients h (n )
j are the electron

spins. coherence order during interval tj of that part of the density
The effect on the generic density matrix s of an ideal matrix which gives rise to Gn(I) .

pulse along the y axis of the rotating frame with turning Using Eqs. [15] and [20], one can write the normalized
ESEEM due to a nucleus of spin I asangle b is given by

e0 ibSyse ibSy Å F c 2saa / s 2sbb 0 sc(sab / sba) c 2sab 0 s 2sba / sc(saa 0 sbb)

c 2sba 0 s 2sab / sc(saa 0 sbb) c 2sbb / s 2saa / sc(sab / sba)
G , [19]

where c Å cos(b/2) and s Å sin(b/2). The pulse causes
M(I)Å E( techo )

E(0)
Å 2

2I/ 1transfers among the different blocks. In particular, a p pulse
(c Å 0, s Å 1) exchanges saa with sbb and sab with sba ,
whereas after a p/2 pulse (c Å s Å 201/2), each block is a 1*

/`

0`

Re TrH1
2

∑
n

cne
0 iVS tn Gn(I)Jg(VS)dVS

linear combination of all the four blocks of the density matrix
before the pulse. Again, if the original blocks are linear combi-
nations of rotation matrices in I space, the transformed blocks Å 1

2I/ 1are also linear combinations of rotation matrices in the same
space. It is then proved that, throughout an ESEEM experiment,

1 Re TrH∑
n

cnGn(I) *
/`

0`

e0 iVS tn g(VS)dVSJ [21]the off-diagonal blocks are linear combinations of rotation ma-
trices defined in I space. As for the diagonal blocks, they remain
null if there are only p pulses in addition to the initial p/2

since E(0) Å (2I / 1)/2. When tn Å 0, the integral amounts
pulse (as in primary ESEEM); if there is at least another pulse

to 1 and the corresponding Gn(I) contributes to the echo.
with turning angle b x p in addition to the first pulse, the

When tn x 0, the integral is zero because the range of VStndiagonal blocks are also linear combinations of rotation matri-
is much larger than 2p. Physically, this means that the elec-

ces in I space because of transfer from the off-diagonal blocks.
tron spins are uniformly spread in the x , y plane, and the

If microwave pulses with arbitrary phase are used, there are
corresponding Gn(I) does not contribute to the echo. Re-

additional constant phase factors but the proof remains valid.
stricting the summation to the Gn(I) which do not vanish

In this case, however, the electron spin echo is no longer di-
upon integration, the normalized ESEEM becomes

rected along the x axis of the rotating frame. The rules to
predict the direction of the echo can be found elsewhere (24).

Consider now a generic ESEEM pulse sequence con- M(I) Å 1
2I / 1

Re ∑
n

cnTr{Gn(I)}
sisting of r nonselective pulses and r free-evolution periods
of duration tj ( j Å 1, 2, . . . , r) , as depicted in Fig. 1a. The Å Re ∑

n

cnVn(I) , [22]
amplitude of the echo occurring at techoÅ ( r

jÅ1 tj is monitored
during the experiment. Recalling the preceding discussion,
one can write the upper-right block of the density matrix at where Vn(I) Å Tr{Gn(I)}/(2I / 1) is that part of the
echo time sab( techo ) as a sum over all the rotation matrices ESEEM which stems from the electron coherence-transfer
Gn(I) generated by the pulse sequence pathway represented by Gn(I) . The group theory of rotations

(25, 26) states that every rotation matrix Gn(I) in I space
belongs to the (2I / 1)-dimensional irreducible representa-sab( techo ) Å 1

2
∑
n

cne
0 iVStn Gn(I) . [20]

tion of the SU(2) group of the unitary unimodular matrices.
Hence, the trace of Gn(I) is the (real) character of a rotation
in a (2I / 1)-dimensional space, and the last expressionThe cn are real coefficients which depend only on the turning

angle and phase of the pulses, and the overall factor 1
2 is for can be written as
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92 ALESSANDRO PONTI

where [I] is the largest integer not greater than I ( the square
brackets have this meaning only when they appear in a sum-
mation limit) , fulfill the condition

U2I(cos jn) Å sin[(2I / 1)jn]
sin jn

,

I Å 0, 1
2, 1, 3

2, . . . . [26]

Substituting cos jn Å Vn(1
2) in Eq. [26] and using Eq. [23],

it is found that

Vn(I) Å 1
2I / 1

U2I[Vn( 1
2 )] . [27]

It is thus proved that, when the high-field approximation is
valid, Vn(I) can be easily calculated from Vn(1

2) by means
of the Chebyshev polynomials of the second kind. The com-
plete ESEEM formula is readily obtained by summing the
contributions from all the coherence-transfer pathways, as
given in Eq. [23]. The U2I(x) relevant to ESEEM spectros-
copy are reported in Table 1.

Explicit ESEEM Formulas

The results of the previous subsection are now used to
calculate the explicit analytical formulas for the ESEEMFIG. 1. Pulse sequences for ESEEM experiments. (a) Generic experi-

ment, (b) primary ESEEM, (c) stimulated ESEEM. arising from hyperfine coupling to a nucleus of arbitrary
spin. From now on, the two-pulse (p /2— t— p— t) and
the three-pulse (p /2— t— p /2—T— p /2— t) sequences,
which are reported in Figs. 1b, c, are considered. ESEEMM(I) Å ∑

n

cnVn(I) ,
experiments result from the combination of a pulse sequence
with an incrementation scheme, but the analytical formula
of the ESEEM depends only on the pulse sequence and thenVn(I) Å 1

2I / 1
sin[(2I / 1)jn]

sin jn

. [23]
it applies to any experiment based on that sequence. While
primary ESEEM (3, 4) is the only experiment derived from

The real parameters jn can be determined (15) by substi-
tuting I Å 1

2 in the last equation:
TABLE 1

Chebyshev Polynomials of the Second Kind U2I(x)Vn(1/2) Å cos jn . [24]

I U2I(x)
The last two equations implicitly tell us that Vn(I) is a poly-

0 1nomial of degree 2I in Vn(1
2) . However, such expressions

1
2 2 xdo not allow one to go further in a general way. To do so,
1 4 x2 0 1we need to find an explicit expression of the relationship 3
2 8 x3 0 4 x

between Vn(I) and Vn(1
2) . The Chebyshev polynomials of 2 16 x4 0 12 x2 / 1

the second kind (27, 28) 5
2 32 x5 0 32 x3 / 6 x
3 64 x6 0 80 x4 / 24 x2 0 1
7
2 128 x7 0 192 x5 / 80 x3 0 8 x
4 256 x8 0 448 x6 / 240 x4 0 40 x2 / 1U2I(x) Å ∑

[ I ]

qÅ0

(01) qS2I 0 q

q D(2x)2( I0q ) ,
9
2 512 x9 0 1024 x7 / 672 x5 0 160 x3 / 10 x
5 1024 x10 0 2304 x8 / 1792 x6 0 560 x4 / 61 x2 0 1
11
2 2048 x11 0 5120 x9 / 4608 x7 0 1792 x5 / 280 x3 0 12 xS2I 0 q

q D Å (2I 0 q)!
q!(2I 0 2q)!

, [25] 6 4096 x12 0 11264 x10 / 11520 x8 0 5376 x6 / 1120 x4 0 84 x2 / 1
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93ESEEM MODULATION FROM HIGH-SPIN NUCLEI

the two-pulse sequence, two experiments are based on the using the binomial theorem and rearranging the sum, one
obtainsthree-pulse sequence: 1-D stimulated ESEEM (4, 29) (t* å

t / T incremented) and 2-D stimulated ESEEM (30) (t
and t* independently incremented). To predict and to inter- Vn(I) Å ∑

2 I

pÅ0

Cp(I)kpW p
n , [33]

pret the results of the various experiments based on the same
sequence, it is often advisable to simplify the general formula
by showing only the time intervals which are varied during where
the experiment. In the following, we will see an example of
such a procedure applied to stimulated ESEEM. Cp(I)

Following the previously discussed procedure, the r-pulse
ESE modulation Mr(I) (r Å 2, 3) for a nucleus of spin I Å ∑

[ (2 I0p ) /2]

qÅ0

(01) p/q 22 I02q

2I/ 1 S2I0 q

q DS2I0 2q

p D .
can be easily worked out as

[34]
M2(I) Å V2(I) , G2(I) Å e0 iJate0 iJbte iJate iJbt [28]

To compute this summation, notice that Cp(I) is proportionalM3(I) Å 1
2[V3a( I) / V3b( I)] ,

to the p th derivative of U2I(x) evaluated at x Å 1:
G3a( I) Å e0 iJat=e0 iJbte iJat=e iJbt ,

G3b( I) Å e0 iJate0 iJbt=e iJate iJbt= , [29] Cp(I) Å 1
2I / 1

(01) p

p!
U (p )

2I (1) . [35]

where mnemonic subscripts are used for the Vn(I) and the
This intermediate result makes it possible to find a very

Gn(I) . G2(I) represents electron coherence which evolved
simple expression for Cp(I) since the U2I(x) are the solutions

in sba during the first evolution period and in sab during
of the Chebyshev equation of the second kind (28)

the second one. Either G3a( I) or G3b( I) represents the parts
of the density matrix that evolved as electron coherence in

(1 0 x 2)U (2)
2I (x) 0 3xU (1)

2I (x)
sba during the first evolution period and in sab during the
third, but that dwelled in saa and in sbb , respectively, during / 2I(2I / 2)U2I(x) Å 0, [36]
T Å t* 0 t. These examples show that the partition of
the ESEEM into the Vn(I) is unique and based on physical valid for 01 £ x £ /1. Evaluating Eq. [36] at x Å 1 and
grounds. To compute the Vn(I) , there are needed the well- noting that U2I(1) Å 2I / 1, one obtains
known explicit expressions of the Vn(1

2) for the primary echo
modulation (3, 4)

U (1)
2I (1) Å 1

3
(2I / 2)(2I / 1)(2I) . [37]

V2( 1
2 ) Å 1 0 k[ 1

2 (1 0 cos vat)(1 0 cos vbt)] [30]
The higher derivatives are obtained by further differentiating
Eq. [36] with respect to x and substituting xÅ 1. The general

and for the stimulated echo modulation (4, 30)
expression is readily recognized to be

V3a(
1
2 ) Å 1 0 k[ 1

2 (1 0 cos vat*)(1 0 cos vbt)] . [31]
U (p )

2I (1) Å (2I / 1 / p)(2I / p) . . .(2I / 1 0 p)
1r3r5r. . .r(2p / 1)

V3b can be obtained from V3a by exchanging a and b every-
where. Å (2I / 1 / p)!

(2I 0 p)!(2p / 1)!!
, [38]

The above developed theory implies that when I ú 1
2 the

ESEEM amplitude depends nonlinearly on the modulation
where (2p / 1)!! is the double factorial of 2p / 1, i.e., thedepth parameter k . Now k is introduced in order to divide
product of the odd natural numbers up to 2p / 1. Cp(I) canVn(I) into terms linear, quadratic, cubic, etc., in k . For the
now be expressed as a rational number by merging Eqs.pulse sequences considered, one can rewrite Vn(1

2) as
[35] and [38] into the expression

Vn( 1
2 ) Å 1 0 kWn , [32]

Cp(I) Å 1
2I / 1

(01) p(2I / 1 / p)!
p!(2I 0 p)!(2p / 1)!!

. [39]

where Wn contains the nuclear transition frequencies and
does not depend on k . Substituting Eq. [32] in Eq. [27], Special cases are C0(I) Å 1 and C1(I) Å 0(4

3)I(I / 1).
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carefully applied to both indexes q and m , and the last ex-The coefficients of the polynomial in Eq. [33] contain only
pression becomesthe nuclear spin I in addition to the dummy index p . The

expressions developed up to now are valid for any ESEEM
experiment for which one can write Eqs. [27] and [32].

∑
p

naÅ0

∑
[ (p0na ) /2]

mÅ0

(01) na210 (2m/na )S p

2m / na
DIn order to work out the analytical formulas for the

ESEEM, we consider the generic term W p
n and transform it

in a linear combination of cosine functions, where the argu-
1 S2m / na

m De(na)cos(naa) . [44]ments contain the modulation frequencies that one finds in
the ESEEM. Then all the W p

n are summed so that Vn(I) is
expressed as a weighted sum over all possible modulations. Processing in the same manner the summation involving
Finally, the ESEEM Mr(I) is computed as a summation, the cos q =b and defining nb similarly to na , one can write, after
coefficients of which represent the amplitude of the peaks some rearrangements,
in the Fourier-transformed ESEEM spectrum.

To keep notation at a minimum, Wn is rewritten as
W p

n

Wn Å 1
2 (1 0 cos a)(1 0 cos b) [40] Å 20p ∑

p

naÅ0

∑
p

nbÅ0

Qp(na)Qp(nb)cos(naa)cos(nbb) ,

[45]for nÅ 2, 3a, 3b. The arguments a and b, proportional to the
nuclear transition frequencies va and vb , can be identified by
comparison with Eqs. [30] and [31]. The algebraic similar- where
ity between primary and stimulated ESEEM can be traced
back to the fact that primary ESEEM can be formally consid- Qp(n) Å (01) n210ne(n)
ered as a special case of stimulated ESEEM obtained by
setting T Å 0. Using the binomial theorem, one can write 1 ∑

[ (p0n ) /2]

mÅ0

202mS p

n / 2mDSn / 2m

m D . [46]

W p
n Å 20pF ∑

p

qÅ0

(01) qS p

qDcos qaG Note that Qp(n) does not depend on the spin I but is
completely determined by the form [40] of the ESEEM. The
product cos(naa)cos(nbb) —which is named modulation1 F ∑

p

q =Å0

(01) q =S p

q *
Dcos q =bG . [41]

pair and abbreviated as (na , nb) —could also be written as
[cos(naa / nbb) / cos(naa 0 nbb)] /2 to show that it is

Now we use the formula (31) which gives cos qa as a sum equivalent to two combination modulations (sum and differ-
of cosines of multiples of a ence) with halved amplitude. However, when at least one

modulation index is zero, the modulation pair reduces to a
single modulation with full amplitude. Therefore, it is conve-

cos qa Å 210q ∑
[q /2]

mÅ0

e(q 0 2m)S q

mDcos[(q 0 2m)a] , nient to write such modulation pairs as a product so that the
additional factor 1

2 is automatically accounted for. Looking
at the summation limits in Eq. [45], we see that na and nb

range from 0 to p . The other way round, a given pair (na ,e(x) Å H1/2 if x Å 0

1 otherwise
[42]

nb) appears in W p
n only when p § ñ Å max(na , nb) . There

are then (p / 1)2 modulation pairs among which one can
recognize a zero-frequency term (na Å nb Å 0), pure a orto show which modulations arise from the single power un-
pure b modulations (nb Å 0 or na Å 0, respectively) , andder consideration. The first summation in square brackets in
combination modulations (na x 0 and nb x 0).Eq. [41] becomes

The sum of all the modulations, each weighted according
to Eqs. [33] and [45], is

∑
p

qÅ0

∑
[q /2]

mÅ0

(01) q210qS p

qDS q

mD
Vn(I) Å ∑

2 I

pÅ0

20pCp(I)kp

1 e(q 0 2m)cos[(q 0 2m)a] . [43]

We now rearrange the last expression so that one of the 1 ∑
p

naÅ0

∑
p

nbÅ0

Qp(na)Qp(nb)cos(naa)cos(nbb) .
summations runs explicitly over the modulation index na å
q 0 2m . To do so, a cascade of transformations must be [47]
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Exchanging the summation order and remembering that the
M3(I ; t, t*) Å 1

2
∑
2 I

naÅ0

∑
2 I

nbÅ0

P(I , na , nb; k)pure and combination harmonics occur at a given p value
only when p § ñ , the explicit formula for Vn(I) can now

1 [cos(navat*)cos(nbvbt)be written as

/ cos(navat)cos(nbvbt*)] . [51]
Vn(I)

In this case, a pure modulation pair, say (na , 0) , gives rise
Å ∑

2 I

naÅ0

∑
2 I

nbÅ0

P(I , na , nb; k)cos(naa)cos(nbb) , [48] to a modulation along each time axis [cos(navat) and cos
(navat*)] with amplitude P(I , na , 0; k) /2 (axial peaks) .
A combination modulation pair produces four modulations
[cos(navat* / nbvbt) and cos(navat* 0 nbvbt) plus thosewhere
with t and t* exchanged] with amplitude P(I , na , nb; k) /
4 (cross peaks) . Since Eq. [51] is symmetric under ex-
change of t and t*, the peaks in the 2-D FT spectrum formP(I , na , nb; k) Å ∑

2 I

pÅnI

Cp(I)Qp(na)Qp(nb)S k

2D
p

. [49]
reflecto-symmetrical pairs (30) about the main diagonal.

Stimulated ESEEM is most often performed as a one-
dimensional experiment by holding t fixed while varyingThe amplitude P(I , na , nb; k) of each modulation pair is a
t*, and the preceding equation can be specialized accord-polynomial of degree 2I in k in which the lowest exponent of
ingly. This is not a mere exercise but it reveals featuresk is ñ. Each polynomial coefficient is a product of terms which
proper to the 1-D experiment. Equation [51] could be rewrit-depend separately on the spin I and on the two modulation
ten by splitting the double sum and collecting the termsindexes. In their turn, these terms are rational numbers assem-
independent of t*, but it takes less algebra to go back to Eq.bled from remarkably simple blocks: the normalizing factor 2I
[40] and write it for W3a as/ 1, integer powers of 2, and factorials. The amplitude of the

(na , nb) modulation pair is the same as that of (nb , na) since
W3a Å 1

2 (1 0 cos vat*)(1 0 cos vbt) . [52]the exchange of the modulation indexes has no effect on P(I ,
na , nb; k). There are (2I / 1)2 unique modulation pairs in
Vn(I), out of which one is zero frequency, 2 1 2I are pure a The t-dependent term is left unchanged while the other term
and pure b modulations, and 4I2 are combination modulations. is manipulated exactly as in the general case. One arrives
Comparing the pth power of Wn with the (p 0 1)th power, it quickly at
can be seen that the former contributes to the weight of the p2

modulation pairs already contained in the latter and that it
contains 2p / 1 new modulation pairs. There are then 2I 0 V3a( I) Å 2 ∑

2 I

nÅ0

S(I , n ; vbt, k)cos(nvat*) , [53]
ñ / 1 contributions of order ñ, ñ / 1, . . . , 2I in k to the
amplitude of each (na , nb) pair.

whereThe formula for primary ESEEM is readily obtained from
Eqs. [28], [48], and [49] as

S(I , n ; vbt, k)

M2(I ; t)
Å 1

2
∑
2 I

pÅn

Cp(I)Qp(n)(1 0 cos vbt) pS k

2D
p

. [54]

Å ∑
2 I

naÅ0

∑
2 I

nbÅ0

P(I , na , nb; k)cos(navat)cos(nbvbt) ,

As before, V3b( I) is obtained from V3a( I) by exchanging[50]
a and b everywhere. The product (1 0 cos vbt)k can be
considered as an effective t-dependent modulation depth

where the time dependence of M2 is shown. A (na , 0) modu- parameter, which ranges from 0 to 2k . Note that, for a given
lation pair translates into one single modulation cos(navat) t, the effective modulation depth parameter for the vb modu-
with amplitude P(I , na , 0; k) , while a combination modula- lations has a different value. The 1-D stimulated ESEEM
tion pair (na , nb) yields the two combination (sum and dif- can then be written as
ference) modulations cos[(nava / nbvb)t] and cos[(nava

0 nbvb)t] , each with amplitude P(I , na , nb; k) /2. Therefore
M3(I ; t*) Å ∑

2 I

nÅ0

S(I , n ; vbt, k)cos(nvat*)a primary ESEEM contains at most 2I / 2I / 2 1 4I 2 Å
4I(2I / 1) unique modulations. The formula for the two-
dimensional stimulated ESEEM is / S(I , n ; vat, k)cos(nvbt*) . [55]
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Comparing this with the 2-D stimulated ESEEM formula, it
can be seen that there are no combination modulations since
the double summation has been converted to a single summa-
tion which runs over only one modulation index. The number
of modulations is thus reduced to 4I , neglecting the zero-
frequency terms. The suppression effect, well known for I
Å 1

2, exists also for arbitrary I since the amplitude of the vm

modulation depends on 1 0 cos vnt (m x n) . In general,
different nvm harmonics are affected to a different extent by
the suppression effect except when 1 0 cos vnt Å 0, since
then all nvm harmonics vanish (blind spot) .

The Fourier transformation of Eqs. [50], [51], and [55]
would give the analytical form of the frequency-domain
ESEEM spectra. However, the position and the amplitude
of each frequency-domain peak can be obtained by inspec-
tion of these equations, bearing in mind that the amplitude
of the combination harmonics is equally divided between
the sum and difference peaks. The general Eqs. [27], [33],
and [48] are the central result of this paper. From them, I
derived the ESEEM formulas for primary and stimulated
ESEEM for arbitrary I which are based on the same approxi-
mations and have the same validity as the well-known Eqs.
[30] and [31] for I Å 1

2.

ANALYSIS OF THE SPECTRAL AMPLITUDES

In the previous section, it was shown that the modulation FIG. 2. Absolute value of the ratio Rp(I ,1,0; k) of the term of order p
amplitude in primary and stimulated ESEEM experiments in k to the linear term (pÅ 1) contributing to the amplitude of the fundamen-

tal pure harmonic (1, 0) in primary and 2-D stimulated ESEEM. Positiveis given by the polynomials P(I , na , nb; k) and S(I , n ; vmt,
Rp(I ,1,0; k) are represented by a solid line, negative by dashed lines. Thek) of degree 2I in k . In this section, we analyze in some
curve that crosses the horizontal axis closest to the origin represents p Ådetail the importance of the nonlinear terms with respect to
2, the second closest represents p Å 3, and so on.

the linear term and the amplitude of the modulations as a
function of the modulation depth parameter. The vast major-
ity of natural stable nuclides bear half-integer spin (32)

of the p th-order term to the linear term contributing to theranging from 1
2 to 9

2, the most notable exceptions being 2H
amplitude of the fundamental (1, 0) modulation for selectedand 14N which have spin 1; stable nuclides with integer
I values. At k à 0, the linear term is of course dominantspin I x 1 (6Li, 10B, and 50V) are rarely observed in EPR
but the nonlinear terms soon become significant. The qua-spectroscopy. In the following discussion, I therefore con-
dratic (p Å 2) term can even overtake the linear term whensider only the I Å 1 case in addition to the half-integral
I § 3

2, and it shows up at smaller k on increasing I . Also thevalues I Å 1
2,

3
2,

5
2,

7
2,

9
2.

p ú 2 terms can be larger than the linear term when I § 5
2,The amplitude of the modulations in primary and 2-D

and as before, the high-order terms grow faster for larger Istimulated ESEEM is given in Eq. [49]. The occurrence of
since Rp(I , 1, 0; k) is proportional to I 2(p01) . When k ap-higher harmonic modulations is entirely due to the nonlinear-
proaches 1, the linear term is often the least contribution toity of the ESEEM with respect to k . Indeed, the linear term
the modulation. It should also be noted that terms of differentcontributes only to the amplitude of the fundamental modula-
order alternate in sign as can be seen in Fig. 2 where, fortions ( ñ Å 1), and since 0 £ k £ 1, one might think that
any I , Rp(I , 1, 0; k) is positive for odd p and vice versa.the high-order terms are always less significant than the
This holds also for any other modulation, as the sign oflinear term. This is not true since the polynomial coefficients
Qp(na)Qp(nb) is determined by the modulation indexes,can be very large, as illustrated in Fig. 2 which shows the
whereas that of Cp(I) is fixed by the parity of p . Therefore,absolute value of the ratio
the modulation amplitudes are not increasing throughout the
0 £ k £ 1 interval but they are oscillating functions with

Rp(I , 1, 0; k) Å Cp(I)Qp(1)Qp(0)
C1(I)Q1(1)Q1(0) S k

2D
p01

[56] maxima and minima.
The amplitude of the ESEEM arising from a high-spin
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TABLE 2 that large modulations can be obtained only with large k
Modulation-Depth Parameter k for Which the Amplitude Error (vide infra) .

Arising from the Neglect of Nonlinear Terms Is 10 and 50% of I consider now the spectral amplitudes of the modulations
the True Amplitude for the Indicated Modulations as a function of the modulation depth parameter k . The

amplitudes P(I , n , 0; k) of the pure harmonics (n , 0) are
(1, 0) (1, {1)

plotted in Fig. 3. Recall that the (0, n) modulations have
the same amplitude as the (n , 0) modulations. For any value10% 50% 10% 50%

I error error error error of k , the amplitudes are positive and the deepest modulation
is always (1, 0) , the second deepest (2, 0) , and so on. No

1 0.122 0.445 0.097 0.334 modulation has amplitude greater than 0.5, a limiting value3
2 0.052 0.208 0.039 0.153

attained only in the case of a I Å 1
2 nucleus with k Å 1. At5

2 0.020 0.082 0.015 0.060
very small k values, the amplitude behaves as the n th power7

2 0.011 0.045 0.008 0.033
of k since there P(I , n , 0; k) à Cn(I)Qn(n)Qn(0)(k /2) n .9

2 0.007 0.028 0.005 0.021

Then the fundamental modulation (1, 0) dominates over the
its harmonics and the ESEEM spectrum is rather simple.
The initial slope of the pure modulation amplitudes grows
rapidly with I : considering the expression of Cn(I) , onenucleus can then be a largely nonlinear function of the modu-
finds that the initial slope of the (n , 0) modulation is propor-lation depth parameter, and the value of k at which nonlinear-
tional to I 2n , e.g., it is 2

3I(I / 1) for n Å 1. Then ESEEMity becomes significant becomes smaller as I increases, as
can be appreciated from Table 2, where the values of k , at spectroscopy is extremely sensitive to high-spin nuclei when
which the amplitude error arising from the neglect of nonlin- k is small.
ear terms is 10 and 50% of the true amplitude for the funda- Another striking difference in the behavior of the pure-
mental modulations, are reported. It is interesting at this
point to compare the above results with those from an earlier
analysis (5) of the primary ESEEM due to a nucleus of
arbitrary spin which neglected the nuclear quadrupole inter-
action and the terms of second and higher order in k in the
modulation amplitude. From such approximate analysis, it
was found that the primary ESEEM due to a nucleus of
arbitrary spin is given by Eq. [30] provided that 4

3I(I / 1)k
is substituted for k . This result can be reproduced and ex-
tended to stimulated ESEEM by retaining only the first-order
terms in the amplitudes, which are then zero except for the
fundamental modulation. Thus, Eq. [48] becomes

Vn(I)

Å 1 0 k

2
C1(I)(1 0 cos a 0 cos b / cos a cos b)

Å 1 0 4
3

I(I / 1)kF1
2

(1 0 cos a)(1 0 cos b)G
[57]

as expected. However, this expression is valid only when
nonlinearity is negligible, that is, for small k values, since
the terms of second and higher order in k become quickly
significant, as shown in Fig. 2 and in Table 2. From the
latter, it can be seen that the linearized expression does not
lead to severe errors for I Å 1 nuclei, such as deuterium, as

FIG. 3. Amplitude P(I , n , 0; k) of the pure modulations (n , 0) inlong as k is smaller than about 0.1, but it is not tenable for
primary ESEEM against the modulation depth parameter k . The largestlarge-I nuclei: for I Å 9

2, a 50% error is introduced for k as
amplitude corresponds to (1, 0) , the second largest to (2, 0) and so on.

small as 0.03. Of course, the linearized expression does not The amplitude of the pure harmonics in 2-D stimulated ESEEM is P(I , n ,
0; k) /2.contain any modulation harmonics and incorrectly suggests
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TABLE 3 other so that the larger one is not always that with the lowest
Modulation-Depth Parameter k for Which the Absolute Value index. However, the most striking feature in Fig. 4 is that
of the Amplitude of the Indicated Modulations Is Maximum the spectral amplitude of the combination harmonics can

change sign, so that the phase of a combination line may be
I (1, 0) (2, 0) (1, {1) (1, {2)

different for different samples or for the same sample at
different magnetic fields or even within the powder-like en-1

2 1.000 1.000
velope of the combination peaks from a disordered sample.1 0.667 1.000 0.500 1.000

3
2 0.408 0.800 0.275 0.711 Of course, this also means that the spectral amplitude of a
5
2 0.190 0.421 0.119 0.335 combination line may drop to zero for certain k values. This
7
2 0.108 0.249 0.067 0.190 is a new type of suppression effect, which can occur only9
2 0.070 0.163 0.042 0.122 for combination modulations and for I ú 1

2. It arises from
the interference of electron coherence-transfer echoes (24)
which are modulated at the same frequency but stem from

modulation amplitudes between the I ú 1
2 case and the usual transfer of electron coherence between different level pairs.

I Å 1
2 case is recognized when one considers moderate to Its physical origin is then different from that of the suppres-

large values of k . In fact, only the highest harmonic (2I , 0) sion effect in 1-D stimulated ESEEM of I Å 1
2 nuclei which

increases monotonically as for I Å 1
2; the other pure modula- arises from the t-dependent amplitude of the nuclear coher-

tions reach a maximum amplitude and then slowly decay
while oscillating. The number of crests and troughs de-
creases in the higher harmonics and the highest one (2I , 0)
has none, as already noted. For a given I , the maximum-
amplitude k value becomes larger for higher harmonics,
whereas for a given n , it becomes smaller at larger I values.
The value at which P(I , 1, 0; k) is maximum ranges from
k Å 1 (I Å 1

2) to a much smaller k Å 0.07 (I Å 9
2) , as shown

in Table 3. At large k , the n ú 1 harmonics may make the
ESEEM spectrum much more complicated.

As discussed in the preceding section, the combination
pair (na , nb) represents the two distinct sum and difference
modulations. In the following, the phrase ‘‘spectral ampli-
tude’’ means the amplitude P(I , na , nb; k) /2 of whichever
of the two modulations is associated with the pair (na , nb) . In
Fig. 4a are plotted the spectral amplitudes of the symmetric
combination modulations va { vb and of the asymmetric
ones va { 2vb for several I values. Like the pure modula-
tions, the combination modulations have zero spectral ampli-
tude at k Å 0, reach an extreme value, and then decay. The
behavior of the initial slope and of the position of maximum
spectral amplitude as a function of I is similar to that of the
pure modulations: the value at which P(I , 1, 1; k) is maxi-
mum ranges from k Å 1 (I Å 1

2) to a much smaller k Å
0.042 (I Å 9

2), as shown in Table 3. The spectral amplitudes
P(7

2, na , nb , k) /2 of the most important combination modula-
tions arising from a I Å 7

2 nucleus are plotted in Fig. 4b. The
initial slope can be either positive or negative, and its abso-
lute value decreases for higher harmonics. Considering the
lowest order coefficient Cñ(I)Qñ(na)Qñ(nb) , one finds that FIG. 4. (a) Amplitude P(I , 1, 1; k) /2 and P(I , 1, 2; k) /2 of the
the initial slope is positive (negative) when min(na , nb) is combination modulations in primary ESEEM. The curves are labeled by

the nuclear spin quantum number I . The amplitude of the correspondingeven (odd). It is apparent that the higher harmonics are
harmonics in 2-D stimulated ESEEM is halved. (b) Amplitude P(7/2, na ,generally weaker but tend to be more important for large k
nb; k) /2 of the most significant combination harmonics in the primaryvalues. There the spectrum becomes very complicated since
ESEEM for a nucleus with spin 7

2. In each panel are collected the modula-
several combination lines have comparable amplitude. It tions with fixed na and nb ranging from na to 2I / 1 Å 7. Some curves
should also be noted that, at variance with pure modulations, are labeled by the b modulation index nb; the other labels can be easily

inferred.the amplitudes of the combination modulations do cross each
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mary ESEEM: all amplitudes are positive for any values of
the suppression factor (1 0 cos vmt) and of the modulation
depth parameter k . In the vicinity of a blind spot, cos(vbt)
à 1 so that the lowest-order term in S(I , n ; vbt, k) becomes
largely dominant (Fig. 5a, 1 0 cos vbt Å 0.1) . Then the
amplitude of (n , 0) is proportional to kn and the fundamental
harmonic (1, 0) is much larger than any other (n ú 1, 0)
modulation. In other words, on approaching a blind spot,
the higher is the harmonic, the quicker it vanishes. The prod-
uct (1 0 cos vmt)k could be considered as an effective t-
dependent modulation depth parameter which can be varied
between 0 and 2k . The experimenter can then trade sensitiv-
ity for simplification of the ESEEM spectrum by choosing
a t value close to a blind spot.

When 1 0 cos vbt Å 1 (Fig. 5b), the amplitude of the
va modulations is free from suppression effects, therefore
1-D stimulated ESEEM is best compared with primary
ESEEM. Comparing Fig. 5 with Fig. 3, one immediately
notices that in 1-D stimulated ESEEM the harmonics are
more important with respect to the fundamental, and the
number of extremes in correspondent modulations is largely
reduced. The most important difference is however that the
amplitudes of the harmonics in 1-D stimulated ESEEM cross
each other ( this occurs only when I § 5

2) . As for the combi-
nation modulations, one cannot pick out the fundamental
modulation by inspection of the spectrum since it is not
always the largest one. When k is large, the modulationsFIG. 5. Amplitude S(I , n ; vbt, k) of the modulations arising from a
have similar amplitude and the spectrum becomes morenucleus with spin I Å 5

2 or I Å 9
2 in 1-D stimulated ESEEM. The modulation

index n is reported only for the first few harmonics, the others can be easily crowded. This trend is even more evident when t is such
inferred. The value of the suppression factor 1 0 cos vbt is: (a) 0.1, (b) that 1 0 cos vbt Å 2 (Fig. 5c): all the harmonics have
1.0, (c) 2.0. about the same amplitude. Note also that at k Å 1 the even

harmonics vanish,1 whereas the odd harmonics have ampli-
tude 1

6 for I Å 5
2 and 1

10 for I Å 9
2.

ences excited by the p /2— t— p /2 subsequence. Being
independent of any time interval of the pulse sequence, the

SPECTRAL SIMULATIONS
new suppression effect can be coped with only by per-
forming the experiment at another microwave frequency

Without knowledge of the analytical formulas, thewhere the nuclear Zeeman interaction and thus the modula-
ESEEM arising from a nucleus of arbitrary spin can be com-tion depth parameter are different.
puted by numerical simulation of the time evolution of theThe 1-D stimulated ESEEM features only the pure modu-
spin system during the experiment, e.g., using the GAMMAlations (n , 0) and (0, n) , the amplitudes of which are given
(33) routine library, but such calculations require a consider-in Eq. [54]. As in primary and 2-D stimulated ESEEM, the
able amount of computing time. The previously developedmodulation amplitudes may be a largely nonlinear function
theory provides two much faster methods for the numericalof the modulation-depth parameter. The analysis of the rela-
simulation of the ESEEM. The analytical formulas can betive importance of the different terms in S(I , n ; vmt, k) is
implemented in a computer program, thus saving a largesimilar to that of the previously discussed experiments and
fraction of computing time. However, this procedure stillit is not worthwhile repeating. If suffices to say that the 1-

D stimulated ESEEM amplitudes are in general slightly less
sensitive to high-order terms. Without loosing generality, I 1 This is a special case of a more general rule valid for 1-D stimulated

ESEEM. When (1 0 cos vbt)k Å 2 and I is half-integer ( integer) , theconsider in the following only the (n , 0) modulations. In
even (odd) va harmonics vanish, whereas the odd (even) harmonics haveFig. 5 are plotted the amplitudes S(I , n ; vbt, k) of the
amplitude 1/(2I / 1). This rule can be easily proved by noting that in thismodulations (n , 0) arising from a nucleus of spin I Å 5

2 or
case V3a(

1
2) Å cos vat* and V3a( I) Å [1/(2I / 1)]sin[(2I / 1)vat*] /sin9

2 for different values of vbt. The behavior of the modulation vat*. Simplifying the fraction and recalling that M3(I ; t*) Å [V3a( I) /
V3b( I)] /2, one demonstrates the general rule.amplitudes is similar to that of the pure modulations in pri-

AID JMR 1179 / 6j1c$$$327 07-16-97 10:59:24 maga



100 ALESSANDRO PONTI

TABLE 4
Comparison of the Time Needed to Compute a Primary ESEEM Trace for a System Consisting of One Electron

and One Nucleus with Spin I by Different Procedures

Relative computing time

I Å 1
2 I Å 5

2 I Å 9
2

Time evolution of the spin system 85 390 1390
Analytical formula 1 4 16
Analytical formula for I Å 1

2 plus tranformation by the Chebyshev polynomials (C// program) 1 2 3
Analytical formula for I Å 1

2 plus transformation by the Chebyshev polynomials (Matlab program) 1 1 1

involves a large number of evaluations of polynomials and modulation depth parameter affects the spectral shape, the
ESEEM simulations are reported as properly phased cosine-cosine functions which can be substantially reduced using a

computing strategy in two steps: (1) the ESEEM is calcu- FT spectra. Such spectra can be obtained from real experi-
ments when the ‘‘deadtime’’ problem is coped with eitherlated for nuclear spin I Å 1

2, the other conditions being the
by mathematical (40) or by instrumental techniques, suchsame; (2) the Vn(1

2) are transformed into the Vn(I) following
as pulse-swapping (29) , remote-echo detection (41) , andEq. [27] to get the desired ESEEM. The last method requires
echo-modulation echo (42) .only the knowledge of the analytical formula for I Å 1

2 and
of its partition into the Vn(I) so that it can be used to simulate
experiments also when the corresponding formula for arbi-
trary spin would be exceedingly complicated, e.g., experi-
ments based on the four-pulse sequence (p /2— t— p /2—
t1— p— t2— p /2— t) such as HYSCORE (34) , DE-
FENCE (35) , CF (36) , HF (37) , and several others
(37, 38) . All three procedures have been implemented as
C// programs compiled with the GNU C// compiler
(version 2.5.8) and the GAMMA library (version 3.3) , and
have been run on an IBM RISC System/6000 Model 355H
workstation. They produced identical spectra for a wide
range of spin systems. The relative speed of the three pro-
grams is reported in Table 4 for the simulation of a primary
ESEEM trace with I Å 1

2,
5
2, and 9

2. The availability of the
analytical formula enables a large reduction in computing
time, about two orders of magnitude. A further substantial
reduction can be obtained by the procedure based on the
calculation of the Vn(1

2) . The computing time can be even
further reduced, especially for large I , by implementing the
latter procedure in an environment optimized for numerical
calculations, such as Matlab (39) . All the simulations pre-
sented in this section were carried out using this last method.
The computer programs in C// and Matlab languages are
available from the author upon request.

Simulations of primary and 1-D stimulated ESEEM are
now presented in order to illustrate the characteristics proper
to nuclei with I ú 1

2 which were remarked in the previous
section. A single orientation of the external magnetic field
with respect to the hyperfine principal axes is taken into

FIG. 6. Primary ESEEM of an ordered S Å 1
2, I Å (1

2,
5
2,

9
2 ) system.

account in these simulations, which are then examples of the Simulation parameters: vI /2p Å 1.0 MHz, A\ /2p Å 0.5 MHz, A⊥ /2p Å
ESEEM observed in ordered systems such as single crystals. 0.2 MHz, u Å 457. (a) Time-domain traces; solid line, I Å 1

2; dotted line,
Since the goal of the present section is to show how the I Å 5

2, dashed line, I Å 9
2. (b) Spectra obtained by cosine FT of the trace

after baseline correction, apodization with a Kaiser window, and zero filling.peculiar dependence of the modulation amplitude on the
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spondent FT spectra for the three spin systems considered
subject to a slightly larger hyperfine interaction (A\ /2p Å
0.8 MHz, A⊥ /2p Å 0.2 MHz, vI /2p Å 1.0 MHz, u Å 457) .
The modulation depth parameter at this orientation is k Å
0.097. The different shapes of the time traces and the pres-
ence of many harmonics in the cosine-FT spectra is already
evidence of the nonlinearity but it is perhaps more striking
that the va and vb peaks (v /2p Å 1.27 and 0.79 MHz,
respectively) have similar amplitude for I Å 5

2 and I Å 9
2 (cf.

Fig. 3) and that the va { vb combination peaks at v /2p Å
2.06 and 0.48 MHz are smaller for I Å 9

2 than they are for
I Å 5

2 (cf. Fig. 4a) .
The high-order modulations are even more prominent

when k is large as pictured in Fig. 8a where the cos-FT
primary ESEEM spectrum for a nucleus with spin 9

2 and
hyperfine coupling falling in the matched (43) range (A\ /
2p Å 2.7 MHz, A⊥ /2p Å 1.8 MHz, vI /2p Å 1.0 MHz, u
Å 457) is reported. Since kÅ 0.669, the ESEEM is extremely
nonlinear and the spectrum is very crowded and difficult to
interpret if even a single nucleus is present. The amplitude
of the pure modulations decreases steadily when the modula-
tion index gets larger. On the contrary, that of the combina-
tion modulations does not follow any simple rule as shown

FIG. 7. Primary ESEEM of an ordered S Å 1
2, I Å (1

2,
5
2,

9
2 ) system.

Simulation parameters: vI /2p Å 1.0 MHz, A\ /2p Å 0.8 MHz, A⊥ /2p Å
0.2 MHz, u Å 457. (a) Time-domain traces; solid line, I Å 1

2; dotted line,
I Å 5

2; dashed line, I Å 9
2. (b) Spectra obtained by cosine FT of the trace

after baseline correction, apodization with a Kaiser window, and zero filling.

The greater sensitivity to high-spin nuclei even at small
k values is illustrated in Fig. 6 where the primary ESEEM
traces and the correspondent FT spectra for three systems
consisting of one electron and one nucleus with spin I Å 1

2 ,
5
2 , and 9

2 are reported. The nuclei are subject to an axial
hyperfine interaction (A\ /2p Å 0.5 MHz, A⊥ /2p Å 0.2 MHz,
vI /2p Å 1.0 MHz); the angle u between B0 and the unique
axis of the hyperfine interaction is 457. The modulation depth
parameter at this orientation is k Å 0.024 and then the I Å
1
2 ESEEM amounts only to a few percent of the echo ampli-
tude, whereas the I Å 5

2 ESEEM is very deep, attaining about
50% of the echo amplitude, and that for I Å 9

2 is about twice
as deep. Such very large enhancement of the modulation
depth can be traced back to the large modulation amplitudes
at small k for high-spin nuclei as pictured in Figs. 3 and 4a.

FIG. 8. Cosine-FT primary ESEEM spectra of an ordered S Å 1
2, I ÅSince k is small, the n ú 1 modulations are rather weak, but

9
2 system with hyperfine coupling in the matched range. Simulation parame-the amplitude of the fundamental modulations is already
ters: vI /2p Å 1.0 MHz, A\ /2p Å 2.7 MHz, A⊥ /2p Å 1.8 MHz. (a) u Å

significantly affected by high-order terms (cf. Table 2). 457, (b) enlargement of (a) , (c) u Å 57. The time-domain traces were
Nonlinearity shows up as soon as k becomes a little larger. baseline corrected, apodized with a Kaiser window, and zero filled prior to

FT.Figure 7 shows the primary ESEEM traces and the corre-
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by the va { nvb modulations, best visible in the enlargement
(Fig. 8b). Such behavior can be understood by comparing
the spectra with Fig. 4. Indeed, it is noteworthy that the
fundamental combination modulations at frequency (va /
vb) /2p Å 2.39 MHz and (va 0 vb) /2p Å 1.88 MHz are
positive and about as large as the va { 6vb modulations.

We have just seen that when I ú 1
2, a small k value can

be better than a large one with regard both to sensitivity and
to resolution since the fundamental modulations are large
and dominant. Another advantage stems from the fact that
the modulation depth parameter is small near the principal
directions of the hyperfine interaction. Therefore, a compli-
cated single-crystal spectrum may be simplified by rotating
the sample until one of the hyperfine principal directions is
nearly aligned with the external field. This property also
paves the way for directly measuring the principal values of
the hyperfine interaction by means of ESEEM spectroscopy:
in fact, the peak amplitude still vanishes exactly at the princi-
pal directions, but it is quite large in proximity to them. This
is illustrated in Fig. 8c which shows the cos-FT primary
ESEEM spectrum for the same system as before but at a
different orientation (u Å 57, k Å 0.009). The fundamental
modulations largely dominate the spectrum and A\ /2p can
be measured from (va 0 vb) /2p Å 2.696 MHz with great
accuracy. Of course, the correspondence of small k with
large amplitude can be beneficial also to disordered-system
spectra which would show intense features very near to the FIG. 9. Cosine-FT 1-D stimulated ESEEM spectra for an ordered S Å
hyperfine principal directions. 1

2, I Å 9
2 system with hyperfine coupling in the matched range. Simulation

When the primary ESEEM spectrum is too crowded, it is parameters: vI /2p Å 1.0 MHz, A\ /2p Å 2.7 MHz, A⊥ /2p Å 1.8 MHz, u
Å 457. The time-domain traces were baseline corrected, apodized with aadvisable to perform 1-D stimulated ESEEM experiments
Kaiser window, and zero filled prior to FT. (a) t Å 835 ns, (b) t Å 902to get rid of all the combination harmonics. The price one
ns, (c) t Å 279 ns.must pay is, of course, the occurrence of the suppression

effect. The cos-FT 1-D stimulated ESEEM spectra for a
been considered in this paper. First, it has been shown thatnucleus with spin 9

2 with the same parameters as before (k
the ESEEM resulting from any pulse sequence made up ofÅ 0.669 at u Å 457) are reported in Fig. 9. The top spectrum
nonselective microwave pulses and free-evolution periodsis computed for t Å 835 ns where the suppression factors
can be expressed as the trace of a rotation matrix acting inare (1 0 cos vat) à (1 0 cos vbt) à 0.78. It is much less
the (2I / 1)-dimensional Hilbert subspace associated withcrowded than the corresponding primary spectrum even if
the nuclear spin, provided that the high-field approximationmany harmonics are significant. Note the oscillations in the
is valid. Then, by resorting to the group-theoretical descrip-modulation amplitudes already remarked on in the discus-
tion of rotations, the ESEEM due to a spin I ú 1

2 has beension of Fig. 5. The suppression effect can be used to simplify
expressed as a Chebyshev polynomial of the second kindthe spectrum. By choosing t in the vicinity of a blind spot,
where the independent variable is the ESEEM for a hypothet-the high-order modulations are preferentially suppressed as
ical I Å 1

2 nucleus subject to the same interactions as the realillustrated by the spectra in the middle and at the bottom of
one. The ESEEM of I ú 1

2 nuclei then contain several har-the Fig. 9 which are computed with t Å 902 ns (1 0 cos
monics of the modulation frequencies observed in the I Åvat Å 0.10) and t Å 279 ns (1 0 cos vbt Å 0.10), respec-
1
2 case and the modulation amplitudes are polynomials oftively. In this case, the fundamental modulations can be
degree 2I in the modulation depth parameter k . The generaleasily picked out not only because the higher harmonics are
theory has been applied to the primary and to the 1-D andextensively suppressed but also because they have a larger
2-D stimulated ESEEM experiments for which explicit ana-amplitude when the effective modulation depth is small.
lytical formulas for coupling to a nucleus of arbitrary spin

CONCLUSIONS have been obtained as linear combinations of cosine func-
The electron-spin-echo envelope modulation arising from tions; the arguments thereof contain the modulation fre-

quencies.the hyperfine coupling to a nucleus of arbitrary spin I has
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The central result of the theory developed is that the mod- by exciting at different magnetic field settings when the
sample exhibits anisotropy. The modulation amplitude vs kulation amplitudes depend on k in a largely nonlinear way.
plots provide a useful tool to predict the effect of changingThis introduces two differences with respect to the ESEEM
k on the spectrum and then to design a strategy suited to theof spin-1

2 nuclei. First, the amplitudes of the fundamental
experimenter’s goals. At variance with the first-order theory,pure and combination modulations, already present in the I
which suggests making k as large as possible to gain sensitiv-Å 1

2 case, are nonlinear functions of k ; second, harmonics
ity, it is now recognized that a larger k usually yields a lowerof the fundamental modulations (up to the 2Ith one) appear
resolution due to an increased number of spectral lines andin the ESEEM with amplitudes which can be comparable
may even result in lower sensitivity if the maximum ampli-with those of the fundamental modulations. As a general
tude point is at smaller k . For instance, as the fundamentalrule, nonlinear effects are more important when I is large,
modulations have large amplitude and dominate the spec-provided that all the other factors are the same. In all the
trum when the modulation depth parameter is small (espe-three ESEEM experiments considered, the modulation am-
cially for large I) , in order to improve resolution one couldplitudes show a similar behavior. When k is very small, they
prefer a small k when performing ESEEM experiments onare proportional to k ñ ; when k becomes larger, they reach a
samples containing high-spin nuclei. This peculiar behaviormaximum (in absolute value) and then slowly decay with
makes the direct measurement of the principal values of theoscillations since terms of different order alternate in sign.
hyperfine interaction in principle feasible: since k is alwaysThe shape of these curves depend strongly on the nuclear
small near the hyperfine principal directions, one can choosespin: when I is larger, the initial slope is steeper, the maxi-
an excitation frequency such that the amplitude of the funda-mum amplitude is reached at smaller k , and there are more
mental modulations from centers oriented close to the princi-oscillations.
pal directions is preferentially enhanced. For ordered sys-While the amplitude of the pure modulation is always
tems, this means that spectral lines closely related to thepositive, the sign of the combination ones in primary (and
hyperfine principal values have significant amplitude; in dis-2-D stimulated) ESEEM depends on k , and then their ampli-
ordered systems, the ‘‘turning points’’ typical of CW-EN-tude vanishes for one or more k values irrespective of t.
DOR can be recovered. Another useful tool is provided by

This new suppression effect arises from the interference of
putting the suppression effect in 1-D stimulated ESEEM to

electron coherence-transfer echoes which modulate the echo
good use. When I ú 1

2 , one can choose t in the vicinity of
at the same frequency but stem from transfer of electron

a blind spot to preferentially suppress higher harmonics,
coherence between different level pairs. Its physical origin

another example of trading sensitivity for resolution. Finally,
is then different from that of the suppression effect in 1-

on the basis of the reported theory, a very efficient algorithm
D stimulated ESEEM which arises from the t-dependent

for the simulation of ESEEM spectra has been designed and
amplitude of the nuclear coherences excited by the p /2—

implemented which features a reduction of the computing
t— p /2 subsequence. This latter effect has been shown to time by about three orders of magnitude compared to ex-
occur also when I ú 1

2. isting procedures.
The results of the earlier first-order analysis have been

reproduced by omitting the nonlinear terms, an approxima-
REFERENCES

tion possible only when k à 0. The general theory allows
one to know the error caused by the neglect of high-order 1. A. Schweiger, Appl. Magn. Reson. 5, 229 (1993).
terms and then the suitability of the older theory to specific 2. W. B. Mims, K. Nassau, and J. D. McGee, Phys. Rev. 123, 2059
situations. Such error is reasonably small for I Å 1 nuclei (1961).
such as deuterium even at rather large k , but it becomes so 3. L. G. Rowan, E. L. Hahn, and W. B. Mims, Phys. Rev. 137, 61

(1965).large for high-spin nuclei that the earlier analysis does not
4. W. B. Mims, Phys. Rev. B 5, 2409 (1972); W. B. Mims, Phys. Rev.apply properly even at small k . It is then clear that the

B 6, 3543 (1972).general theory permits a more thorough understanding of
5. W. B. Mims, J. Peisach, and J. L. Davis, J. Chem. Phys. 66, 5536the ESEEM from high-spin nuclei (provided that they are

(1977).not subject to a large nuclear quadrupole interaction), which
6. A. A. Shubin and S. A. Dikanov, J. Magn. Reson. 52, 1 (1983).have not been routinely studied by ESEEM spectroscopy up
7. M. Romanelli, M. Narayana, and L. Kevan, J. Chem. Phys. 80, 4044to now. The present treatment also reveals the usefulness of (1984).

performing experiments at different k values when I ú 1
2 8. T. Ichikawa, J. Chem. Phys. 83, 3790 (1985).

nuclei are involved. The modulation depth parameter can be 9. M. K. Bowman and R. J. Massoth, in ‘‘Electronic Magnetic Reso-
experimentally affected by a change in the strength of the nance in the Solid State’’ (J. A. Weil, M. K. Bowman, J. R. Morton,

and K. F. Preston, Eds.) , p. 99, Can. Soc. Chem., Ottawa, 1987.nuclear Zeeman interaction (or by sample rotation for or-
10. K. Matar and D. Goldfarb, J. Chem. Phys. 96, 6464 (1992).dered systems). This can be in general achieved by using a

different microwave frequency or, in a more limited manner, 11. K. Matar and D. Goldfarb, J. Magn. Reson. A 111, 50 (1994).

AID JMR 1179 / 6j1c$$$328 07-16-97 10:59:24 maga



104 ALESSANDRO PONTI

12. A. Schweiger, C. Gemperle, and R. R. Ernst, J. Magn. Reson. 86, 26. M. Tinkham, ‘‘Group Theory and Quantum Mechanics,’’ Chap. 5,
McGraw–Hill, New York, 1964.70 (1990); E. J. Hustedt, A. Schweiger, and R. R. Ernst, J. Chem.

Phys. 96, 4954 (1992); J. Sebbach, E. C. Hoffmann, and A. 27. G. Arf ken, ‘‘Mathematical Methods for Physicists,’’ Chap. 13, Aca-
Schweiger, J. Magn. Reson. A 116, 221 (1995). demic Press, New York, 1985.

13. M. K. Bowman, Isr. J. Chem. 32, 339 (1992); E. C. Hoffmann and 28. U. W. Hochstrasser, in ‘‘Handbook of Mathematical Functions’’
A. Schweiger, Chem. Phys. Lett. 220, 467 (1994); E. C. Hoffmann, (M. Abramowitz and I. A. Stegun, Eds.) , Dover, New York, 1965.
M. Hubrich, and A. Schweiger, J. Magn. Reson. A 117, 16 (1995). 29. J.-M. Fauth, A. Schweiger, L. Braunschweiler, J. Forrer, and R. R.

14. G. Jeschke and A. Schweiger, Molec. Phys. 88, 355 (1996); G. Ernst, J. Magn. Reson. 66, 74 (1986).
Jeschke and A. Schweiger, J. Chem. Phys. 105, 2199 (1996). 30. R. P. J. Merks and R. de Beer, J. Chem. Phys. 83, 3319 (1979).

15. S. A. Dikanov, A. A. Shubin, and V. N. Parmon, J. Magn. Reson. 31. I. S. Gradshteyn and I. M. Ryzhik, ‘‘Tables of Integrals, Series, and
42, 474 (1981). Products,’’ p. 25, Academic Press, New York, 1980.

16. (a ) D. Goldfarb and L. Kevan, J. Am. Chem. Soc., 109, 2303 32. J. A. Weil, J. R. Bolton, and J. E. Wertz, ‘‘Electron Paramagnetic
(1987); (b ) A. Tyryshkin, S. A. Dikanov, and E. J. Reijerse, J. Magn. Resonance,’’ p. 534, Wiley, New York, 1994.
Reson. A 116, 10 (1995).

33. S. A. Smith, T. O. Levante, B. H. Meier, and R. R. Ernst, J. Magn.
17. R. P. Merks and R. de Beer, J. Magn. Reson. 37, 305 (1980).

Reson. A 106, 75 (1994).
18. J. Isoya, M. K. Bowman, J. R. Norris, and J. A. Weil, J. Chem. Phys.
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